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1 Introduction

In this paper, we study the contribution of background D-branes to the spacetime su-

perpotential for closed strings in type II string compactifications on compact Calabi-Yau

threefolds. Our focus is the extension of the methods developed in [1, 2] towards making

contact with the standard set of multi-parameter models studied in the context of closed

string mirror symmetry, and first in [3–6].

The superpotential on the D-brane worldvolume is an interesting quantity to study,

from many points of view, and has applications in all areas of D-brane physics and math-

ematics. Generally speaking, one expects a holomorphic functional W(u; z) on the in-

finitesimal open string state space, coordinatized by u, with parametric dependence on
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closed string moduli z. The expansion around the critical points of W with respect to

u should govern the low-energy interactions in the corresponding N = 1 string vacuum.

This description comes with the important caveat that it is hard to know how to compute

invariantly off-shell (or relatedly that the physical couplings depend on the Kähler poten-

tial), but is an essential tool towards understanding D-branes on Calabi-Yau manifolds.

For a very short sampling of early literature on this subject, see [7–11].

Dualities shed light on some of these questions. In particular, the relation of open topo-

logical strings to Chern-Simons theory and M-theory gives an interpretation of perturbative

string amplitudes (of which the superpotential is the tree-level data) in terms of knot in-

variants and counting of BPS states, respectively [12]. This strategy opened the way to

a quantitative understanding of D-brane superpotentials on non-compact geometries [13],

subsequently leading to many spectacular developments in topological string theory, see

for example [14]. It has also been understood how these superpotential computations fit

into a special geometry formalism [15, 16]. On the other hand, these results were, at least

initially, restricted to non-compact setups and it has not been clear throughout how the

compact case would be covered. More evidence is desirable to further stabilize the status

of the superpotential as a numerical invariant of the D-brane configuration space. This

should also help to reconnect with the algebraic and categorical approaches developed for

instance in [17, 18].

The main lesson of [1, 2] is that already by just restricting the superpotential to the

critical points,

W|∂uW=0 (1.1)

one obtains a rather non-trivial invariant attached to a general, including compact, D-brane

configuration. The quantity (1.1), which depends on discrete open string, and continuous

closed string moduli, has a classical mathematical meaning in the B-model [2], as well as

an enumerative interpretation in the A-model [19]. Following the quintic, a handful of

examples have now been worked out [20, 21]. Progress on the relation to the framework

of [16] has also been made, see [22–25].

In the present paper, we will continue to work with the quantity (1.1), and give ex-

amples of some further properties that appear over more complicated (multi-dimensional)

moduli spaces. We will also touch on issues of compactification of moduli, monodromy,

and the open extension of the mirror map.

The bulk of our study proceeds by the analysis of examples. We will however begin in

section 2 with recalling the basic setup for the computation of the Picard-Fuchs equations

in complete intersection Calabi-Yau as well as their extension to the open string sector. As

in [2], the D-brane configurations that we study are captured by a collection of holomorphic

curves that reside at the intersection of the Calabi-Yau with certain hyperplanes. This

discussion will be followed by our first new example, based on the intersection of two cubics

in P
5. It has the feature that the curves themselves are not complete intersection, but is

otherwise qualitatively very similar to [1, 2, 20]. Moreover, the enumerative predictions

have been checked in the A-model, giving further support to the entire framework.

We will stay with one-parameter complete intersections in section 3. It has been
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noted that among the fourteen hypergeometric one-parameter Calabi-Yau Picard-Fuchs

equations, ten admit an extension by the same algebraic inhomogeneity as in [1] that is

sensible in the sense that the extending solution has an integral Ooguri-Vafa expansion.

Of those ten, four are geometrically realized by hypersurfaces in weighted projective space,

and the relevant D-brane geometries were identified in A- and B-model in [1, 2, 20, 21].

(The integrality can then be a formal consequence of [26].) We will here supply the B-model

branes for most of the remaining cases. Moreover, we will find other algebraic extensions

that characterize a different vacuum structure (Zp discrete Wilson line with p > 2 as

opposed to p = 2 as in [1]). Accompanying the discussion of the two-parameter model, we

will also find an extension of the Picard-Fuchs equation in one of the models for which the

extension of [1] did not make sense, see section 6. The solution of this last extension is

not hypergeometric.

The most involved computations are undertaken for the two-parameter model known

as P11226[12], for which analysis we will draw on [3]. We summarize our D-brane geometry

in section 4, and show that we obtain an integral instanton expansion around the appropri-

ate large volume point. In section 5, we discuss the structure of the moduli space. When

studying D-branes using (1.1), one expects that the combined open-closed moduli space is

generically a multi-covering of the closed string moduli space branched over the discrim-

inant locus over which the (discrete) D-brane moduli space becomes singular. Perhaps

the most interesting feature is that this D-brane discriminant, being of codimension one,

generically intersects the compactification divisor of the underlying closed string moduli

space. This intersection need not be transverse and one expects that interesting physics

will take place at these new types of singularities. (Most of the mathematics should be in

place, although the singularities of normal functions over multi-parameter moduli spaces

remain an active field of research, see, e.g., [27] for a recent survey.)

We will analyze in detail only one of these new structures, where the D-brane discrim-

inant enters the large volume region. The first step here is an additional blowup of the

moduli space described in [3]. The coordinate on the exceptional divisor corresponds to the

quantum volume (BPS tension) of a domainwall that interpolates between certain vacua of

our D-brane geometry. As we will see, there are then two regimes in which the open-closed

string background admits a classical geometric interpretation in the A-model. In one of

them, the domainwall is represented in the A-model by a 4-chain interpolating between

two Lagrangian submanifolds, and in the other, by a disk ending on a single Lagrangian.

(In the B-model, the domainwalls are always represented by 3-chains suspended between

holomorphic curves.) The smooth interpolation between the two regimes constitutes a new

instance of a topology changing transition, of the type first observed in [28, 29]. Note that

we are able to make these assertions without having identified the actual D-brane config-

uration in the A-model. We will however discuss which qualitative features this geometry

must have in order to be consistent with the B-model and mirror symmetry. A linear sigma

model description of the phenomenon would be desirable.
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2 Overview and a simple example

In this paper, we study Calabi-Yau geometries that are obtained from the intersection of

the zero locus of a collection of polynomials (Wj)1≤j≤n−3 in variables (xi)1≤i≤n+1. The

xi are homogeneous coordinates on weighted projective space P
n
w1,...,wn+1

, and the Wj are

assumed to be homogeneous of degree dj with respect to the scaling specified by the wi.

This means that

v(Wj) = djWj (2.1)

where v is the Euler vector field

v =
∑

i

wixi
∂

∂xi
(2.2)

The complete intersection of the {Wj = 0} is Calabi-Yau if
∑n+1

i=1 wi =
∑n−3

j=1 dj .

As usual, the A-model geometry, which we will denote by X, is obtained by choosing

the Wj generic transversal, and appropriately resolving the loci where their intersection

meets the singularities of the weighted projective space. The A-model then depends on

h11(X) ≥ 1 independent Kähler classes and, at closed string tree level, captures the clas-

sical intersection ring Heven(X) together with its quantum corrections due to worldsheet

instantons. The B-model geometry, consequently denoted by Y , has several equivalent de-

scriptions. We will use the version going back to Greene-Plesser [30] in which Y is the reso-

lution of the quotient of a particular family (of dimension h12(Y )) of manifolds ∩{Wj = 0}
by a certain maximal discrete group of phase symmetries preserving the Calabi-Yau condi-

tion. The observables in the B-model originate mathematically from the variation of Hodge

structure associated with the family. Mirror symmetry identifies A- and B-model and, in

particular, h11(X) = h12(Y ).

We will study in practice only cases with h11(X) = h12(Y ) = 1 or 2. Just as the

results of [2, 20], the structure visible in the examples of the present paper is compatible

with an application of methods of toric geometry [31] to compact Calabi-Yau geometries

with D-branes. This was recently studied in [24].

2.1 Picard-Fuchs equations

The moduli spaces governing closed string mirror symmetry can be studied by computing

the periods of the holomorphic three-form on Y , i.e.

̟(z) =

∫

Γ
Ω (2.3)

where Ω ∈ H3,0(Y ), and Γ ∈ H3(Y ; Z). We have here summarily denoted the complex

structure moduli of Y by z. They appear in certain combinations as parameters in the

defining polynomials Wj. A good deal of information about the periods (2.3) can be

obtained from the differential equations that they satisfy as functions of the z. These

differential equations originate from the fact that taking derivatives of Ω with respect

to the parameters generates other elements of the third cohomology H3(Y ). The latter

being finite-dimensional results in cohomological relations amongst the derivatives of ̟(z),
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known as the Picard-Fuchs differential ideal. For such considerations to make sense, it is

important that the three-cycles Γ against which we integrate the three-forms be topological,

i.e., they can be chosen independent of the complex structure parameters z.

The periods then satisfy the Picard-Fuchs differential equations, but so does any (z-

independent) complex linear combination. Singling out an integral basis requires additional

information that can be obtained in part from considerations of monodromy, in particular at

points of maximal unipotent monodromy, as well as by comparison with explicit integration

around carefully chosen cycles.

A useful algorithm to derive these Picard-Fuchs equations is the Griffiths-Dwork reduc-

tion method [32]. For the complete intersections in weighted projective space as described

above, we may represent the holomorphic three-form as a residue

Ω =
|G|

(2πi)3
ResWj=0

ω∏
jWj

(2.4)

where ω is the n-form

ω = α(v) =
∑

i

(−1)i−1wixidx1 ∧ · · · d̂xi · · · ∧ dxn+1 (2.5)

obtained by contracting the “virtual” n+ 1-form

α = dx1 ∧ · · · ∧ dxn+1 (2.6)

with the Euler vector field v from eq. (2.2). In (2.4), we have inserted the order of the

discrete group, G, that relates the {Wj = 0} to Y , as in e.g., [33]. To make the meaning

of the residue in (2.4) more explicit, given a three-cycle Γ ⊂ ∩j{Wj = 0}, we construct a

“tube-over-cycle”, T (Γ), by fibering an n − 3-dimensional torus over Γ that surrounds all

{Wj = 0} sufficiently closely. Then,
∫

Γ
Ω =

|G|
(2πi)n

∫

T (Γ)

ω∏
jWi

(2.7)

Periods of derivatives of Ω with respect to the parameters take very similar forms. The

fundamental relation that allows the Griffiths-Dwork reduction is the identity between

meromorphic forms in the ambient (weighted) projective space,

d

(
Aiωi
P

)
=
∂iA

iω

P
− Ai∂iPω

P 2
(2.8)

where P is any homogeneous polynomial of degree say D, the Ai are polynomials of degree

D −∑j 6=iwj , and ωi is the contraction

ωi = ω(∂i) = α(v, ∂i) (2.9)

By analyzing the relations in the polynomial ideal C[xi]/∂Wj , helped by exploiting the dis-

crete group action, the Griffiths-Dwork method delivers differential operators LGD together

with meromorphic n− 1-forms β̃ such that

LGD
(

ω∏
jWj

)
= dβ̃ (2.10)
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It is important for us to keep in mind that the explicit form of the β̃ depends on a choice

of representatives for cohomology and relations.

Of course, for complete intersections of the type described above, the Picard-Fuchs

equations can be obtained more efficiently by an appropriate extension of the GKZ differ-

ential system associated with the ambient toric variety [5, 6, 34]. The equations are much

simpler to solve in the resulting form that exposes the hypergeometric structure of the

solutions, so it is convenient to rewrite the equations in this fashion. In the examples, we

will chose bases of relations such that the Griffiths-Dwork, LGD, and hypergeometric, L,

operators are simply related by (possibly z-dependent) normalization factors NGD and N .

LN = NGDLGD (2.11)

The normalization NGD is of course irrelevant for computations of ordinary periods, but

becomes essential in the context of open string computations, to which we now turn.

2.2 Extensions

The basic idea behind our computations is to study the open string observable (1.1) via

its representation as a chain integral

WC =

∫ C

Ω (2.12)

Here, C ⊂ Y is a holomorphic curve representing the corresponding critical point of W,

and it is understood that to really carry out the integral, we should choose a pair of homo-

logically equivalent curves, and integrate Ω over a bounding three-chain. This corresponds

in (1.1) to the computation of BPS domainwall tensions as differences of superpotentials

between critical points. Mathematically, such objects are known as normal functions [32].

We refer to [2] for a discussion of the applicability of (2.12).

The chain integral (2.12) is studied via its own differential equations, which is an

inhomogeneous extension of the ordinary Picard-Fuchs system. As we will review, the

inhomogeneous term results from a local computation around the curve C, and does not

depend on where we begin the integral. If one is interested in studying domainwalls, and in

particular for global consistency over the moduli space, one also needs to fix the solution of

the homogeneous equation, that can be freely added to WC , up to integral periods. As for

the periods, this requires additional information such as appropriate boundary conditions.

In the paper [2], an interesting D-brane configuration was obtained via some detours

as a certain matrix factorization of the (single) polynomial defining a quintic hypersurface.

The holomorphic curves needed for the computation of (2.12) were representatives of the

second algebraic Chern classes of these matrix factorizations. A similar strategy was pur-

sued in [20, 21] for the other one-parameter hypersurfaces. The selection principle for the

matrix factorizations in [2, 20] was a conjectural mirror relation to the Lagrangian sub-

manifolds given as real slices of the corresponding A-model geometry. (In [21], a different

scheme was used, see [35] for a possible extension to multi-parameter models.)

In our examples, we will instead directly specify the curves. We do this first of all

because the matrix factorization description of B-branes for complete intersections is more

– 6 –
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complicated [36], and second of all, because we do not have a confident conjecture about

relevant mirror pairs of D-brane configurations. This is due in part to the absence of a

Gepner point in the moduli space of these examples where mirror symmetry could have

been based on an exactly solvable conformal field theory.

What we will borrow from [2] is that the computation of the inhomogeneous term

is possible when the curves are components of the intersection of the {Wj = 0} with

two hyperplanes. (By hyperplane in a weighted projective space, we mean a subspace

linear in at least one coordinate.) Thus, in each of our examples, we will choose two such

hyperplanes, P1 and P2, such that the intersection

(
∩j{Wj = 0}

)
∩ P1 ∩ P2 = ∪iCi (2.13)

decomposes into several component curves Ci. (If there were only one component, the

relevant integrals would all vanish automatically.) We will make the construction such

that the hyperplanes and the curves deform smoothly as we vary the complex structure

parameters z. (More precisely, we allow the possibility of degeneration at co-dimension

one discriminant loci, see below.)

The hyperplanes P1 and P2 are typically not invariant under the action of the discrete

group G, and the curves on Y really come from the orbits under that action. However,

the stabilizer can be non-trivial, and the curves will then intersect the singularities that

are resolved in the construction of Y . In [2], this was analyzed carefully on the mirror

quintic, and it was shown that the net effect is to divide the final result by the order of

the stabilizer, S ⊂ G. This amounts to replacing |G| in (2.4) by the length of the orbit,

|O| = |G|/|S|, to which the respective curve belongs. This is the prescription that we

shall assume.

In such a setup, there are in principle two ways to obtain a non-trivial normal function,

as observed in [20]. We can compare via the chain integral (2.12) either two component

curves in the intersection (2.13), averaged over G, or the same components in two different

G-orbits. In either case, the problem at hand is the computation of the inhomogeneous term

that results from the application of a Picard-Fuchs operator to the chain integral (2.12).

So let us finally explain how we compute this inhomogeneous term. We exploit the

fact that while β̃ in (2.10) is a meromorphic n− 1-form, the curves in (2.13) are contained

in n− 2-dimensional linear subspaces of the ambient projective space. Thus, by laying the

tube around the curves inside of P1 ∩ P2 as much as possible, the computation of
∫

T (Ci)
β̃ (2.14)

localizes to the points {p1, p2, . . .} where Ci intersects one of the other components. In

a local neighborhood Uk of each pk, we chose a local parameterization of Ci, and n − 3

normal vectors nj that point inside of P1 ∩ P2 outside of Uk. To guarantee that we are

surrounding all {Wj = 0}, it is most convenient to arrange the nj such that on Uk,

nj(Wj) > 0 , (2.15)

ni(Wj) = 0 , for i 6= j (2.16)

– 7 –
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By perturbing the curve in the direction
∑
ǫjnj, with each ǫj encircling the origin in the

complex plane, the integral of β̃ around Ci is computed from a combination of n − 2

angular integrals and one radial integral, in a simple generalization of [2]. Note that in

this residue computation, the angular integrals combine with the (2πi)−n in (2.7) to leave

us with an overall 1/(2πi)2 characteristic of a normal function associated with a curve on

a Calabi-Yau threefold.

We have thus computed
|O|

(2πi)n

∫

T (Ci)
β̃ (2.17)

as a first contribution to the inhomogeneous term in the Picard-Fuchs equation. However,

as anticipated, there is in general a second contribution, which originates from the action

of the differential operator on the three-chain. (In distinction to three-cycles, the three-

chains are not annihilated by the Gauss-Manin connection. Note that there is no invariant

separation between the two types of contributions.) As before, this contribution localizes to

the curves, and further to the intersection points pk. To show how this is done in practice,

we let nz be a normal vector representing the first order variation of Ci with respect to the

complex structure parameter z. We then have, for example,

∂k

∂zk

(∫ Ci

Ω

)
=

k∑

l=1

∂k−l

∂zk−l

(∫

Ci

(
∂l−1
z Ω

)
(nz)

)
+

∫ Ci

∂kzΩ (2.18)

The final term enters the Griffiths-Dwork reduction process, while the intermediate inte-

grals can be computed as residues as described above, and then safely differentiated.

The total inhomogeneity is obtained by collecting (2.17) and terms of the form (2.18).

As stressed above, to actually solve the inhomogeneous Picard-Fuchs equation, it is conve-

nient to revert to its hypergeometric form via (2.11).

2.3 Example. P
5[3, 3]

We begin our collection of examples with a model that is qualitatively similar to the quintic

studied in [1, 2, 19]. In particular, if we conjecture that the D-brane configurations that

we will specify below are mirror to the real slices of the A-model, we obtain enumerative

predictions that can be (and in fact have been) checked by independent localization com-

putations in the A-model. The underlying manifold in the A-model is the intersection of

two cubics in CP
5, which, in the notation of the previous subsections, corresponds to n = 5,

w1 = . . . = w6 = 1, and d1 = d2 = 3. As first observed in [37], the mirror manifold can be

represented by the quotient of a one-parameter family of bicubics,

Y = {W1 = 0 ,W2 = 0}/G (2.19)

where W1 and W2 are the particular cubic polynomials

W1 =
x3

1

3
+
x3

2

3
+
x3

3

3
− ψx4x5x6

W2 =
x3

4

3
+
x3

5

3
+
x3

6

3
− ψx1x2x3

(2.20)
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with the complex structure parameter ψ, and G ∼= Z
2
3 × Z9 is the maximal discrete group

preserving W1 and W2, as well as the holomorphic three-form (2.4). By applying Griffiths-

Dwork reduction as reviewed above, we obtain the Picard-Fuchs operator [37]

LGD =
ψ6 − 1

64
∂4
ψ +

7ψ6 − 1

32ψ
∂3
ψ +

55ψ6 + 1

64ψ2
∂2
ψ +

65ψ6 − 1

64ψ3
∂ψ +

ψ2

4
(2.21)

with an inhomogeneous term that in our scheme begins as

β̃ = − ψ2x3ω3

4W1W2
− x2

1x2x3ω1

192ψ3W 2
1W2

+
17ψ3x2

1x2x3ω1

192W 2
1W2

− x1x
2
2x3ω2

192ψ3W 2
1W2

+
17ψ3x1x

2
2x3ω2

192W 2
1W2

− ψ3x1x2x
2
3ω3

4W1W
2
2

− x1x2x
2
3ω3

192ψ3W 2
1W2

+
17x1x2x

2
3ω3

192W 2
1W2

+ · · ·
(2.22)

and contains a total of 64 similar such terms. By changing the normalization via (2.11)

with N = ψ2, NGD = 4/81, we obtain the hypergeometric differential operator

L = θ4 − 9z(3θ + 1)2(3θ + 2)2 (2.23)

where z = (3ψ)−6, and θ = z d
dz .

Turning to the specification of D-brane configurations, we consider the hyperplanes

P1 = {x1 + x2 = 0} , P2 = {x4 + x5 = 0} (2.24)

The intersection of P1, P2 with {W1 = 0,W2 = 0} is reducible. It contains the line

C0 = {x1 + x2 = 0 , x4 + x5 = 0 , x3 = 0 , x6 = 0} (2.25)

as well as two degree 4 curves, C+ and C−. Their homogeneous ideal is generated by

〈x1 + x2, x4 + x5, x
3
3 + 3ψx2

4x6, x
3
6 + 3ψx2

1x3, x
4
3 ± 9ψ2x3

4x1, x
4
6 ± 9ψ2x3

1x4〉 (2.26)

Notice that these are not complete intersection curves. [The simplest way to understand

the curves is via their rational parameterization

x1 = u4 , x2 = −u4 , x3 = α1

√
3ψuv3

x4 = v4 , x5 = −v4 , x6 = α2

√
3ψu3v

(2.27)

where (u, v) are homogeneous coordinates on P
1, and α1, α2 are fourth roots of ∓1 satisfying

α3
1 +α2 = α3

2 +α1 = 0.] Implementing the residue computation sketched above (see [2, 20]

for more details), we find ∫

T (C±)
β̃ = ±(2πi)3

3

32ψ3
(2.28)

The action of the derivatives on the curves (2.18) does not contribute for our choice of

tube and β̃. Finally, we need to collect the various normalization factors. It is not hard

to see that the discrete group acts by relating P1, P2 to 9 similar pairs of hyperplanes.

– 9 –
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The stabilizer of C± is Z9. This leads to the inhomogeneous Picard-Fuchs equation in

hypergeometric form

L
∫ C±

Ω =
±1

(2πi)2
9

8

√
z (2.29)

We can solve this equation around z = 0 by recalling the hypergeometric generat-

ing function,

̟(z;H) =
∞∑

n=0

Γ(1 + 3(n +H))2

Γ(1 + n+H)6
zn+H (2.30)

Indeed, we have, as a power-series in z,

L̟(z;H) = H4 Γ(1 + 3H)2

Γ(1 +H)6
zH (2.31)

Since

L∂H̟(z;H) = ∂HL̟(z;H) , (2.32)

we find that the solutions of the homogeneous equation L̟(z) = 0 are the derivatives with

respect to H,

̟k(z) = ∂kH̟(z; 0) for k = 0, 1, 2, 3 (2.33)

A solution of the inhomogeneous equation (2.29) is given by

W±(z) = ±1

8
̟(z; 1/2) (2.34)

as can be seen from the identity

Γ(1 + 3/2)2

Γ(1 + 1/2)6
=

36

π2
(2.35)

We should note that the actual domainwall tension might differ from W+ −W− by a solu-

tion of the homogeneous equation. This could be studied by careful analytic continuation

and computation of monodromies. The boundary condition at the point ψ = 0 is some-

what more delicate to understand than on the quintic, since the manifold (2.19) becomes

singular there.

An A-model interpretation of the superpotential contribution (2.34) can be obtained

as usual by expanding the normalized expression

Ŵ±(q) = (2πi)2
W±(z(q))

̟0(z(q))
(2.36)

(̟0 is an integral period in the normalization (2.4), see [33].) in the appropriate

flat coordinates

q = e2πit = exp

(
̟1

̟0
(z)

)
(2.37)

The first few terms are

± Ŵ± = 18q1/2 + 182q3/2 +
787968

25
q5/2 + · · · (2.38)
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By the methods of [19], it is known that the entire series Ŵ reproduces the open Gromov-

Witten invariants counting maps from the disk to (X,L), where L is the real slice of the

intersection X of two generic cubics in P
5. Notice that for X = {W1 = 0,W2 = 0} at

ψ = 0, L ∼= RP
3, just as on the quintic.

Finally, we expand Ŵ using the multi-cover formula,

Ŵ± = ±
∑

d,k odd

Nd

k2
qkd/2 (2.39)

obtaining N1 = 18, N3 = 180, N5 = 31518, . . . . According to the proposal of [1, 12],

the Nd count the degeneracy of BPS domainwalls separating the two 4-d N = 1 vacua

corresponding to the choice of discrete Wilson line on L ∼= RP
3. Integrality of the Nd as

a mathematical theorem follows, as on the quintic, from the recent results of [26]. Real

enumerative invariants in the sense of [38] are given by Nd/2.

3 Some more one-parameter models

Before turning to the two-parameter model, we present here two more one-parameter mod-

els with hypergeometric Picard-Fuchs equation. These are the simplest examples for which

we have found inhomogeneous terms different from the simple
√
z extension prominent in all

previously studied cases. We will be content with solving the inhomogeneous Picard-Fuchs

equations up to rational periods, and not work out the exact spectrum of domainwalls.

Closed string mirror symmetry for both models is discussed in detail in [39]. To ab-

breviate some of the formulas below, we introduce the hypergeometric generating function

̟(z;H) =

∞∑

n=0

∏n−3
j=1 Γ(1 + dj(n +H))

∏n+1
i=1 Γ(1 + wi(n+H))

zn+H (3.1)

for given weights wi of the homogeneous coordinates, and degrees dj of the defining poly-

nomials. It is also convenient to reserve a notation for the coefficient of the lowest order

term of L̟(z;H)

Ξ(H) = H4

∏n−3
j=1 Γ(1 + djH)

∏n+1
i=1 Γ(1 + wiH)

(3.2)

3.1 P112112[4, 4]

The B-model geometry is determined by

W1 =
x4

1

4
+
x4

2

4
+
x2

3

2
− ψx4x5x6

W2 =
x4

4

4
+
x4

5

4
+
x2

6

2
− x1x2x3

(3.3)

and G ∼= Z
2
2 × Z16. The generators of G can be taken to be, in customary notation, [39]

1

2
(0, 1, 1, 0, 0, 0) ,

1

2
(0, 0, 0, 0, 1, 1) ,

1

16
(0, 4, 0, 1, 13, 2) (3.4)
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Griffiths-Dwork reduction with N = ψ, NGD = 1/64ψ produces the Picard-Fuchs operator

θ4 − 16z(4θ + 1)2(4θ + 3)2 (3.5)

where z = (8ψ)−4.

(i) We first exhibit the curves that produce the
√
z extension familiar from the quintic.

Consider the hyperplanes

P1 = {x1 + α1x2} P2 = {x4 + α2x5 = 0} (3.6)

where α1, α2 are fourth roots of −1. These 16 pairs of hyperplanes decompose into two

orbits of length 8 under the action of G. The intersection of W1 = 0, W2 = 0 with P1, P2

splits into two components,

C+ = P1 ∩ P2 ∩ {x3 = 0, x6 = 0} (3.7)

C− = P1 ∩ P2 ∩ {x3
3 + 8ψ2α2

2α1x
4
4x

2
2 = 0, x2

2 + 2ψα2x
2
4x6 = 0, x2

6 + 2α1x
2
2x3 = 0}

The residue computation delivers

LGD

∫ C±

Ω = ± |O|
(2πi)2

1

2ψ
(3.8)

and gives the inhomogeneous Picard-Fuchs equation

LW±(z) = ± 4

(2πi)2
√
z (3.9)

As in the previous cases, this is solved by

W± = ±1

4
̟(z; 1/2) (3.10)

The normalization again comes out thanks to

Ξ(1/2) =
1

24

Γ(1 + 2)2

Γ(1 + 1/2)4Γ(1 + 1)2
=

4

π2
(3.11)

The low-degree BPS invariants computed as above (2.39) are N1 = 64, N3 = 5568, N5 =

4668864, . . . . It is possible that these can be interpreted as real enumerative invariants as

for the previously studied models [1, 20, 21]. Note also that since we have two G-orbits in

the set of planes described above, the collection of curves shares a second domainwall that

is a rational linear combination of closed string periods. This is similar to an observation

on the degree 8 hypersurface in [20].

(ii)Now consider the hyperplanes

P1 = {x2
1 + α1

√
2x3} , P2 = {x2

4 + α2

√
2x6} (3.12)

where α1, α2 = ±i. All pairs are related by the action of G, so there is only one orbit, of

length 4. The intersection with W1 = 0, W2 = 0 splits into 4 components,

C0 = P1 ∩ P2 ∩ {x2 = 0, x5 = 0}

Cη = P1 ∩ P2 ∩
{
W1 = 0,W2 = 0, x5

2 = η
25/2ψ4/3

(−α4
2α1)1/3

x4
4x1

}
(3.13)
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where η is a third root of unity keeping track of the root of ψ we are taking. This pat-

tern of curve is signaling a Z3-symmetric collection of brane vacua. Indeed, the residue

computation gives

LGD

∫ Cη

Ω =
|O|

(2πi)2

(
8

27η2ψ1/3
+

50

27ηψ5/3

)
(3.14)

[We also find

LGD

∫ C0

Ω = 0 , (3.15)

as necessary.] Transformation to hypergeometric form yields

L
∫ Cη

Ω =
1

(2πi)2

(
8

27
ηz1/3 +

800

27
η2z2/3

)
(3.16)

Noticing that

Ξ(1/3) =
1

3π2
, Ξ(2/3) =

100

3π2
(3.17)

(where Ξ is defined in (3.2)) we see that the solution can be expressed as

Wη =
2

9

(
η̟(z; 1/3) + η2̟(z; 2/3)

)
(3.18)

We can now apply the standard mirror map to obtain the A-model expansion

Ŵη = (2πi)2
W(z(q))

̟0(z(q))
= 24ηq1/3 + 150η2q2/3 +

2571

2
η4q4/3 +

417024

25
η5q5/3 + · · · (3.19)

We see that the multi-cover formula in the present case takes the form

Ŵη =
∑

3∤d,k

Nd

k2
ηkdqkd/3 (3.20)

with integral Nd (as far as we have checked) counting domainwall degeneracies. Under-

standing the precise geometric meaning of these invariants depends on identifying the

A-model geometry mirror to our curves Cη. The symmetry suggests that the correspond-

ing Lagrangians L have a factor Z3 ⊂ H1(L) in their first homology group, and η is a

discrete Wilson line. It seems unlikely (although it cannot be excluded) that these can be

described as real slices of the complete intersection (3.3). The first few non-trivial numbers

are N1 = 24, N2 = 144, N4 = 1248, N5 = 16680, . . ..

3.2 P123123[6, 6]

Here, the B-model geometry is determined by

W1 =
x6

1

6
+
x3

2

3
+
x2

3

2
− ψx4x5x6

W2 =
x6

4

6
+
x3

5

3
+
x2

6

2
− x1x2x3

(3.21)
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and G ∼= Z36, whose generator we take to be

g =
1

36
(0, 24, 18, 1, 14, 21) (3.22)

Griffiths-Dwork reduction with Nhyper = ψ, NGD = 1/324ψ3 produces the Picard-

Fuchs operator

L = θ4 − 144z(6θ + 1)2(6θ + 5)2 (3.23)

with z = 4−1(6ψ)−6.

(i) We here begin with the set of hyperplanes

P1 = {x2
1 + 21/3α1x2 = 0} , P2 = {x2

4 + 21/3α2x5 = 0} (3.24)

where α1, α2 are third roots of −1. The curves are

C0 = P1 ∩ P2 ∩ {x3 = 0, x6 = 0}

Cη = P1 ∩ P2 ∩
{
W1 = 0,W2 = 0, x3 = η

22/3ψ2/3

(−α2
2α1)1/3

x2
4x1

}
(3.25)

where η runs over third roots of unity. These curves have residue (up to an overall phase

that depends on the choice of hyperplane, see discussion in the next paragraph)

LGD

∫ C0

Ω =
|O|

(2πi)2

(
−21/3ψ − 9

21/3ψ

)

LGD

∫ Cη

Ω =
|O|

(2πi)2

(
21/3

3
ψ +

3

21/3ψ

) (3.26)

The group G ∼= Z36 organizes the planes (3.24) into 3 orbits of length 3. In this example,

G also acts on the η-label in a non-trivial fashion. If g is a generator as in (3.22), then g3

acts within a given hyperplane by η → e2πi/3η. Note that this symmetry is consistent with

the residues (3.26) being independent of η. Another consistency check on (3.26) is that the

sum of residues over all curves in a given hyperplane vanishes. In the end, the Cη come in

3 orbits of length 9, while the C0 come in 3 orbits of length 3. This translates into

L
∫ Cη

Ω = −L
∫ C0

Ω =
1

(2πi)2

(
2

3
η̃z1/3 + 216η̃2z2/3

)
(3.27)

We have here reintroduced third roots of unity η̃ that keep track of the orbit of planes. In

other words, η̃ depends on a combination of α1, α2 in (3.24). In the present model,

Ξ(1/3) =
3

4π2
, Ξ(2/3) =

243

π2
. (3.28)

So a solution of the inhomogeneous Picard-Fuchs equation can be written as

Wη̃ =
2

9

(
η̟̃(z; 1/3) + η̃2̟(z; 2/3)

)
(3.29)

The A-model interpretation is the same as around (3.20), with N1 = 54, N2 = 1080,

N4 = 216432, N5 = 10094490, . . ..
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(ii) Finally, we intersect with

P1 = {x3
1 + α1

√
3x3 = 0} , P2 = {x3

4 + α2

√
3x6 = 0} (3.30)

where α1, α2 = ±i. There are now 5 curves in each hyperplane,

C0 = P1 ∩ P2 ∩ {x2 = 0, x5 = 0}

Cη = P1 ∩ P2 ∩
{
W1 = 0,W2 = 0, x2

2 = η

√
3ψ3/4

(α3
2α1)1/4

x3
4x1

}
(3.31)

where η is a fourth root of unity.

LGD

∫ C0

Ω =
|O|

(2πi)2
6

LGD

∫ Cη

Ω =
|O|

(2πi)2

(
−9

√
3η2ψ3/2

32
− 3

2
− 147

√
3

32η2ψ3/2

) (3.32)

Here, G organizes the hyperplanes (3.30) into 2 orbits of length 2. g2 acts within a given

plane by η → −η. So the Cη end up in 4 orbits of length 4, and C0 in 2 orbits of length 2.

Thus,

L
∫ C0

Ω =
1

(2πi)2
16
√
z

L
∫ Cη

Ω =
1

(2πi)2

(
1

8
η2z1/4 − 8

√
z + 882η2z3/4

) (3.33)

The specialization of the hypergeometric coefficient (3.2) here gives

Ξ(1/4) =
1

8π2
, Ξ(1/2) =

16

π2
, Ξ(3/4) =

882

π2
(3.34)

This matches the relative coefficients between z1/4 and z3/4 in (3.33), while the coefficient

of z1/2 is matched in a linear combination of the C0 and Cη. To work out the entire

spectrum of domainwall, it would be natural to use the two linearly independent solutions

W± = ±1

4
̟(z; 1/2)

Wη̃ =
1

4

(
η̟̃(z; 1/4) + η̃2̟(z; 1/2) + η̃3̟(z; 3/4)

) (3.35)

where η̃ is a fourth root of unity. The Ooguri-Vafa expansion for the two types

is, respectively

Ŵ± = ±
∑

2∤d,k

N2,d

k2
qdk/2

Ŵη̃ =
∑

4∤d,k

N4,d

k2
η̃dkqdk/4

(3.36)

The first few invariants are

N2,1 = 256, N2,3 = 1742592, N2,5 = 65066366720, . . . (3.37)

N4,1 = 32, N4,2 = 248, N4,3 = 2784, N4,5 = 83680, N4,6 = 1741896, . . .
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4 A two-parameter model

We now begin our investigation of D-brane superpotentials in the much-studied two-

parameter model P11226[12]. For the geometry of the closed string moduli space, we rely

on the treatment in [3, 5].

4.1 Data

The generic degree 12 hypersurface in P11226 meets the singularities of the weighted pro-

jective space in a curve along which we have to blow up to produce the A-model geometry

X. The resolution of singularities can be understood by giving the charges of the gauged

linear sigma model fields

x1 x2 x3 x4 x5 x6 P

h1 0 0 1 1 3 1 −6

h2 1 1 0 0 0 −2 0

(4.1)

We will slightly depart from the notation of [3], and denote by H1 the divisor class of

x3 = 0, H2 the class of x1 = 0. The exceptional divisor is E = H1 − 2H2, and h1, h2 are

the dual curve classes. We recall the classical intersection relations

H2
2 = 0 , H3

1 = 4 , H2
1H2 = 2

2h1 = H1H2 , 2h2 = H2
1 − 2H1H2 (4.2)

The mirror manifold is the two-parameter family of Calabi-Yau threefolds obtained from

the vanishing locus of the defining polynomial

W =
x12

1

12
+
x12

2

12
+
x6

3

6
+
x6

4

6
+
x2

5

2
− ψx1x2x3x4x5 −

φ

6
x6

1x
6
2 (4.3)

after orbifolding with respect to the maximal group of phase symmetries G = Z6×Z6×Z2.

One may work with the generators

1

6
(0, 5, 1, 0, 0) ,

1

6
(0, 5, 0, 1, 0) ,

1

2
(0, 1, 0, 0, 1) (4.4)

The periods of the model are governed by a system of two Picard-Fuchs equations. The

Griffiths-Dwork algorithm gives the following relations

LGD,1 = −1

6
∂3
ψ + ψ5∂2

ψ∂φ +
1

2ψ
∂2
ψ + 3ψ4∂ψ∂φ −

1

2ψ2
∂ψ + ψ3∂φ

LGD,2 = 18(φ2 − 1)∂2
φ +

ψ2

2
∂2
ψ + 6ψφ∂ψ∂φ +

3ψ

2
∂ψ + 24φ∂φ +

1

2

(4.5)

Together with appropriate three-forms β̃1, β̃2 whose explicit form we shall suppress. The

transformation to hypergeometric form is accomplished by conjugating the LGD,i as

in (2.11) with N1 = N2 = ψ, and

NGD,1 =
φ

36ψ2
, NGD,2 =

ψ

72
(4.6)
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One obtains

L1 = θ2
1(θ1 − 2θ2) − 8z1(6θ1 + 1)(6θ1 + 3)(6θ1 + 5)

L2 = θ2
2 − z2(2θ2 − θ1)(2θ2 − θ1 + 1)

(4.7)

with z1 = −3−32−6φψ−6, z2 = (2φ)−2, and θi = zi
d
dzi

. The solutions of (4.7) as power

series around z1 = z2 = 0 can be obtained from the hypergeometric generating function,

̟(z1, z2;H1,H2) =
∞∑

n1,n2=0

zn1+H1
1 zn2+H2

2 (4.8)

Γ(1 + 6(n1 +H1))

Γ(1 + n2 +H2)2Γ(1 + n1 +H1)2Γ(1 + 3(n1 +H1))Γ(1 + n1 +H1 − 2(n2 +H2))

by differentiation,

̟0 = ̟(z1, z2; 0, 0)

̟h1 = ∂H1̟(z1, z2; 0, 0)

̟h2 = ∂H2̟(z1, z2; 0, 0)

̟H1 =
(
2∂2

H1
+ 2∂H1∂H2

)
̟(z1, z2; 0, 0)

̟H2 = ∂2
H1
̟(z1, z2; 0, 0)

̟X = −
(2

3
∂3
H1

+ ∂2
H1
∂H2

)
̟(z1, z2; 0, 0)

(4.9)

Recall how these solutions reflect the GLSM charges (4.1) and the intersection rela-

tions (4.2). The closed string mirror map around the large volume point identifies the

Kähler parameters as

h1 = t1 =
1

2πi

̟h1

̟0
, h2 = t2 =

1

2πi

̟h2

̟0
(4.10)

4.2 Curves and residues

As in the one-parameter examples studied in the previous sections, there are several pos-

sibilities for intersecting (4.3) with two hyperplanes such that the resulting plane curve

splits in a non-trivial way in several components, thus realizing the basic pattern of [2].

Presently the most interesting curves are those obtained from the hyperplanes

P1 = {x3 + 2−1/6α1x
2
1 = 0} , P2 = {x4 + 2−1/6α2x

2
2 = 0} (4.11)

where α1, α2 are sixth roots of −1. The intersection of P1 ∩ P2 with {W = 0} splits in

two components, {
x5 = α±x

3
1x

3
2

}
(4.12)

where α± are the two solutions of the quadratic equation

α2
± − 22/3ψα1α2α± − φ

3
= 0 (4.13)

– 17 –



J
H
E
P
0
9
(
2
0
0
9
)
1
2
9

In a way by now familiar, the discrete group G permutes the planes in (4.11). There are 3

orbits of length 12. We will label the resulting curves by C(η,±), where η is a third root of

unity encoding the orbit of planes, and ± refers to the choice of root in (4.13).

Computation of the residues for the two relations in (4.5) gives

LGD,1

∫ C(η,±)

Ω = − |O|
(2πi)2

25/3ηψ3

3(2α± − 22/3ηψ)3

LGD,2

∫ C(η,±)

Ω =
|O|

(2πi)2
25/3η

2α± − 22/3ηψ

(4.14)

Collecting all the factors, and solving (4.13), we can transform to hypergeometric form

L1

∫ C(η,±)

Ω = ± 1

(2πi)2
4ηy

6(1 − 4ηy)3/2

L2

∫ C(η,±)

Ω = ± 1

(2πi)2
1

3(1 − 4ηy)1/2

(4.15)

where we have introduced the variable

y =
(z1
z2

)1/3
= −22/3φ

12ψ2
(4.16)

This combination will play a crucial role in the following discussion. Its precise geometric

role will be clarified during our discussion of the combined open-closed moduli space in

section 5. For now, we proceed with solving (4.15).

4.3 Solutions

To get a good power series expansion, we transform to the independent variables z2, y. We

work with η = 1, ± = +, and absorb the factor of (2πi)2 into W ∼
∫ C

Ω. With θy = y d
dy ,

we have

9L1W =
(
θ2
y(θy − 2θ2) − 72y3z2(2θy + 1)(2θy + 3)(2θy + 5)

)
W = 3

4y

2(1 − 4y)3/2

9L2W =
(
(θy − 3θ2)

2 − 9z2(2θ2 − θy)(2θ2 − θy + 1)
)
W = 3

1

(1 − 4y)1/2

(4.17)

This form of the equations gives us the opportunity to verify, as a consistency check on our

computations so far, that the system of partial differential equations (4.15) is integrable.

Indeed, restricted to z2 = 0, the Picard-Fuchs operators satisfy the relation

L1 = θyL2 (4.18)

and clearly, the inhomogeneities are consistent with this relation. In fact, expanding

1√
1 − 4y

=

∞∑

m=0

Γ(1 + 2m)

Γ(1 +m)2
ym (4.19)
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we can integrate straightforwardly to obtain the solution at z2 = 0,

W(y, 0) = 3

[
1

2
(log y)2 +

∞∑

m=1

Γ(1 + 2m)

m2Γ(1 +m)2
ym

]
(4.20)

Not surprisingly, this series can be rewritten using the dilogarithm function. But let us

put off a discussion of its analytic properties as a function of y until section 7.

Using (4.20) as a first step, one may find a representation of the higher order terms by

solving the appropriate recursion relations. With the ansatz1

W(y, z2) = 3

[
1

2
(log y)2

∑

m∈3Z,n
2n≤m≤3n

am,ny
mzn2 + log y

∑

m∈3Z,n
m≤3n

bm,ny
mzn2

+
∑

m∈3Z,n

cm,ny
mzn2 +

∑

m/∈3Z,n

dm,ny
mzn2

]
(4.21)

one obtains

am,n =
Γ(1 + 2m)

Γ(1 + m
3 )2Γ(1 +m)Γ(1 − m

3 + n)2Γ(1 +m− 2n)

bm,n = am,n

[
2Ψ(1 + 2m)− 2

3
Ψ
(
1 +

m

3

)
−Ψ(1 +m)+

2

3
Ψ
(
1 − m

3
+ n

)
−Ψ(1 +m− 2n)

]

cm,n =
1

2
am,n

[(
bm,n
am,n

)2

+ 4Ψ′(1 + 2m) − 2

9
Ψ′
(
1 +

m

3

)
− Ψ′(1 +m)

−2

9
Ψ′
(
1 − m

3
+ n

)
− Ψ′(1 +m− 2n)

]

dm,n =
Γ(1 + 2m)Γ(m3 − n)2

9Γ(1 + m
3 )2Γ(1 +m)Γ(1 +m− 2n)

(4.22)

where Ψ is the digamma function, Ψ′ its derivative, and it is understood that the formulas

for bm,n and cm,n require a certain limit when the arguments of the Γ-functions hit the poles.

In particular, some of the restrictions on the summation indices in (4.21) are automatic.

After noting that

c0,0 =
1

2
Ψ′(1)

(
2 − 4

9

)
=

7π2

54
(4.23)

we may rationalize the cm,n by subtracting the appropriate multiple of ̟0 from W. It

is in fact natural to rewrite this solution in a more suggestive fashion. The lift of (4.1)

appropriate for our new variables y, z2 is the table

h −1
3 −1

3
1
3

1
3 1 1 −2

l 1 1 0 0 0 −2 0
(4.24)

1Summation indices will always be assumed to run over non-negative integers, with further restrictions

as indicated.
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[This transformation is related to the following (non-integral) change of basis of cohomology

H = 3H1 , L = H1 +H2

h =
1

3
(h1 − h2) =

HL

6
− 2H2

27
, l = h2 =

H2

6
− HL

3

H1 =
H

3
, H2 = L− H

3
h1 = 3h+ l , h2 = l (4.25)

The generating function of solutions now takes the form

˜̟ (y, z2;H,L) =
∑

m∈3Z,n

ym+Hzn+L
2 (4.26)

Γ(1 + 2(m+H))

Γ(1 + 1
3(m+H))2Γ(1 +m+H)Γ(1 − 1

3 (m+H) + n+ L)2Γ(1 +m+H − 2(n+ L))

and the solution of (4.17) given above can be understood from the representation

W(y, z2) = 3

[
1

2
∂2
H ˜̟ (y, z2; 0, 0) + τ(y, z2)

]
(4.27)

where

τ(y, z2) =
4π2

27

∑

m/∈3Z,n

Γ(1 + 2m)

Γ(1 + m
3 )2Γ(1 +m)Γ(1 − m

3 + n)2Γ(1 +m− 2n)
ymzn2 (4.28)

Indeed, by construction,

9L2 ˜̟ (y, z2;H,L) =
∑

m∈3Z

ym+HzL2

(H +m− 3L)2Γ(1 + 2(m+H))

Γ(1 + 1
3(m+H))2Γ(1 +m+H)Γ(1 − 1

3(m+H) + L)2Γ(1 +m+H − 2L)
(4.29)

When acting with ∂2
H , and restricting to H = L = 0, the terms at m 6= 0 would vanish

because of the appearance of Γ(1− m
3 )2 in the denominator, unless both derivatives act on

that factor, to yield

∑

m∈3Z
m>0

m2Γ(1 + 2m)Γ(m3 )2 cos(πm3 )2

9Γ(1 + m
3 )2Γ(1 +m)2

ym =
∑

m∈3Z
m>0

Γ(1 + 2m)

Γ(1 +m)2
ym (4.30)

On the other hand, the term at m = 0 gives a non-zero contribution only when both

derivatives act on (H − 3L)2. Also,

9L2τ(y, z2) =
4π2

27

∑

m/∈3Z

m2Γ(1 + 2m)

Γ(1 + m
3 )2Γ(1 +m)Γ(1 − m

3 )2Γ(1 +m)
ym

=
∑

m/∈3Z

Γ(1 + 2m)

Γ(1 +m)2
ym

(4.31)

In combination, we obtain indeed the inhomogeneity in the form (4.19). A similar compu-

tation verifies the equation for L1.

Note that we may reinstate the discrete labels on the superpotential via

W(η,±)(y, z2) = ±W(1,+)(ηy, z2) (4.32)
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4.4 Mirror map and instanton sum

Most of the rest of the paper is devoted to verifying that the solution of the inhomogeneous

Picard-Fuchs equation has a consistent interpretation as a global holomorphic object over

the entire moduli space. As an important first check, we will here show that the expansion

around y = z2 = 0 satisfies Ooguri-Vafa integrality, i.e., has a consistent interpretation as

counting domainwall degeneracies.

The main step is to understand the mirror map. For this, note that the generating

function (4.26) can of course also be used to express the solutions of the homogeneous

equation. In particular, the regular and simple logarithmic solutions are

̟0 = ˜̟ (y, z2; 0, 0)

̟h = ∂H ˜̟ (y, z2; 0, 0) =
1

3

(
̟h1 −̟h2

)

̟l = ∂L ˜̟ (y, z2; 0, 0) = ̟h2 .

(4.33)

where the relations to (4.9) are dictated by (??). By inspecting (4.21), we may anticipate

from our discussion in section 7 that the tension of a supersymmetric domainwall between

vacua labelled η and e2πi/3η behaves to leading order as T = W(e2πi/3η,±) − W(η,±) ∼
̟h + · · · . Translated into the A-model, this means that the large volume geometry must

admit a domainwall with classical tension

Tclass =
1

3
(t1 − t2) ≡ s (4.34)

Following [12], one may pose the problem to count the degeneracy of such domainwalls,

and this information should be contained in the B-model superpotential W(η,±). As in the

previous compact examples, and in agreement with the structure found in non-compact

examples [13, 16, 40], the prescription is to expand the superpotential with open string

instanton corrections in terms of the classical domainwall tension corrected only by closed

string instantons. In the problem at hand, we introduce

o = exp
(̟h

̟0

)
= e2πis

q = exp
(̟l

̟0

)
= e2πit = q2

(4.35)

The A-model expansion now takes the following form (we have omitted the constant

term (4.23))

Ŵ(η,±) =
W(η,±)

̟0
= ±




3

2
(log ηo)2 +

∑

(m,n)6=(0,0)
k>0

Nm,n

k2
(ηo)kmqkn


 (4.36)

The Nm,n are indeed integer. We display the first few in table 1. Note that the invariants

are symmetric under n → m − n, except when m is a multiple of 3. We may improve on

this after recognizing that the asymmetry is in fact a remnant of closed string instantons.

More precisely, we have for m ∈ 3Z (and m ≥ n)

Nm,n −Nm,m−n =
(2n −m)

2
Gm

3
,n−m

3
(4.37)
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m \ n 0 1 2 3 4 5 6

0 0 1 0 0 0 0 0

1 6 6 0 0 0 0 0

2 3 90 3 0 0 0 0

3 6 -236 1012 6 0 0 0

4 12 -258 2934 -258 12 0 0

5 30 -540 11016 11016 -540 30 0

6 75 -1388 -44274 348 774 179478 -1388 75

Table 1. Open BPS invariant of two-parameter model.

m \ n 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 6 6 0 0 0 0 0

2 3 90 3 0 0 0 0

3 6 388 388 6 0 0 0

4 12 -258 2934 -258 12 0 0

5 30 -540 11016 11016 -540 30 0

6 75 -1388 67602 348 774 67602 -1388 75

Table 2. “Balanced” invariants with manifest symmetry under m→ n−m.

where Gi,j are the standard closed string BPS invariants computed in [3]. (The Gi,j are

themselves symmetric under j → i − j and vanish outside of 0 ≤ j ≤ i.) Expressed in

terms of the standard variables (4.10), the combination (2n−m)Gi,j enters into the closed

string instanton corrections of a particular 4-cycle tension

2 ˆ̟H2 − ˆ̟H1 = −2t1t2 +
∑

i,j,k

(2i − j)Gi,j
k2

qki1 q
kj
2 (4.38)

So after transforming to the new variables, the “balanced” superpotential

W̃ = W − 1

4
(2̟L −̟H) = W +

3

2
∂H∂L ˜̟ +

1

2
∂2
L ˜̟ (4.39)

has an A-model expansion

3

2
s2 +

3

2
st+

1

2
t2 +

∑

m,n,k

Ñm,n

k2
okmqkn (4.40)

with invariants Ñm,n that are now symmetric under n → m − n, see table 2. One

might try to corroborate this symmetry and the modification (4.39) in terms of mon-

odromy calculations.
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C1

C0

Cd
C∞

Ccon

Figure 1. The compactified moduli space before blowups. The four divisors of closed string origin,

depicted with a thicker line, include the large volume divisor C∞, the conifold locus Ccon, the

enhanced symmetry locus C0 = {ψ = 0} and the locus C1 = {φ2 = 1}. The thinner line represents

the open string discriminant Cd. The orbifold point lies at the intersection of C0 and Cd.

5 Open-closed moduli space of two-parameter model

For the subsequent computations, it is useful to have a good global picture of the combined

open-closed moduli space.

Following [3], one begins by noting that the parameter space of (4.3), spanned by (ψ, φ),

is subject to a Z12 quotient generated by (ψ, φ) → (e2πi/12ψ,−φ), since this action can be

undone by the change of coordinate x1 → e−2πi/12x1. The invariant combinations are

ξ = ψ12 , υ = ψ6φ , ζ = φ2 , (5.1)

now subject to the relation

ξζ = υ2 . (5.2)

A first model of the compactified moduli space is obtained by viewing (ξ, υ, ζ) as inhomo-

geneous coordinates in the patch τ = 1 of a copy of P
3. In this compactification, there are

four special loci along which the family acquires various singularities. These are

• the conifold locus Ccon = {ξ+2υ+ζ = τ}, (In ψ, φ space, it is the locus (φ+ψ6)2 = 1.)

• the locus C1 = {ζ = τ} (compactification of φ2 = 1),

• the limit of large ψ, φ, C∞ = {τ = 0},

• the locus of enhanced symmetry C0 = {ξ = 0, υ = 0} (ψ = 0).

These divisors meet at various points. Not all of these intersections are transverse, so

one needs to blow up to obtain a good compactification. In practice, this is accomplished
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C1

C0

Cd

C∞

Ccon

E1

E0

E2

D(−1,0)

D(−1,−1)

D(0,−1)

Figure 2. The moduli space blown up according to [3] such that the closed string boundary divisor

has normal crossings. The large volume point lies at the intersection of C∞ = {z1 = 0} with

D(0,−1) = {z2 = 0}, and is also met by Cd.

by working in the appropriate local coordinates. For example, the large complex structure

point, which is (here uniquely) characterized by maximal unipotent monodromy, is hidden

at the double intersection of C1 and C∞. In the patch ξ = 1, where we can eliminate ζ

using (5.2), this is the point τ = 1/ψ12 = 0, υ = φ/ψ6 = 0. Blowing up once introduces

the coordinate α = τ/υ = 1/(φψ6) on the divisor called D(−1,−1) in [3]. D(−1,−1), C1 and

C∞ now all meet at α = υ = 0. A second blowup of this point inserts the divisor D(−1,0),

with coordinate β = α/υ = 1/φ2 that now intersects C∞ transversely. The coordinates

υ ∼ z1, β ∼ z2 are precisely those appropriate for the closed string mirror map in the

previous section.

Now let us add the D-brane. At a generic point of the moduli space, we are considering

6 disjoint curves C(η,±) which we think of physically as representing 6 different vacua of

some N = 1 theory in 4 dimensions. The combined open-closed moduli space is thus

a six-fold cover of the closed moduli. However, there are various places where some of

these vacua come together, and/or are permuted in various ways under monodromy. The

merging of vacua is accompanied by new light physical degrees of freedom, but is not

necessary for the occurrence of monodromy. Since the monodromies should be consistent

with the symmetry of the problem, there are only 3 non-trivial possibilities: A Z2, a Z3,

or a Z6
∼= Z2 × Z3 rotation of the vacua.

It is rather straightforward to identify some of these loci from the right side of (4.15).

For this, we note that y3 = z1/z2 ∼ φ3/ψ6 is the coordinate on an additional blowup of

the moduli space at the large complex structure point. We call this exceptional divisor Dd.

Taking a third root produces a threefold cover branched at y = 0. We can then see

• a Z3 monodromy, acting on (η,±) → (e2πi/3η,±), at y3 = 0,
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Cd

C∞

D(0,−1)

Cd

C∞

D(0,−1)

Dd

Figure 3. Close up of large volume point, with additional blowup depicted on the right. The

coordinate on the exceptional divisor Dd is denoted y3 = 1/x3 ∼ z1

z2

in the text.

• a Z2 monodromy, acting as (η,±) → (η,∓), at the locus (4y)3 = 1. We will denote

this divisor by Cd. In the homogeneous coordinates, it is the locus

Cd = {ξζ − υ2 = 0, 27υτ + 4ζ2 = 0, 729ξτ2 − 16ζ3 = 0} (5.3)

• a Z6 monodromy, acting as (η,±) → (e2πi/3η,∓) at x ≡ y−1 = 0.

It is straightforward to analyze the intersections of Cd with the loci C0, C1, Ccon, and

C∞ listed above. We have depicted the result in figure 1, and the state of affairs after

the blowups of [3] in figure 2. We will investigate in more detail the blowup of the large

complex structure point, sketched in figure 3, in section 7. It is likely that the other special

points on Cd might also harbor interesting physical effects.

6 Restriction to one-parameter model

It is of interest to pay some more attention to the locus φ = ±1 (z2 = 1/4) of the closed

string moduli space. For these values of the parameters [3], the two-parameter model

P11226[12] becomes birationally equivalent to the one-parameter model P111113[2, 6]. This

entails a certain relationship between the quantum geometries of the two models that

provides a useful check on the calculations.

In our context, we have another reason to look at these relations. As noted in the in-

troduction, P111113[2, 6], although its periods are hypergeometric, does not seem to possess

a brane whose superpotential can be obtained by specializing ̟(z;H) to particular sim-

ple values of H. (Most noticeably, Ξ(1/2) = 16/π3.) By restricting the superpotential of

the two-parameter model, we are able to produce a sensible extension of the Picard-Fuchs

equation also in that case.

The basic relation between the two models is the identity of fundamental periods

̟
(1)
0 (z) = ̟(1)(z; 0) = ̟0(2z

1/3, 1/4) (6.1)

where ̟(1)(z;H) is the appropriate hypergeometric generating function. The relation for

the other periods is less direct, although we still have

̟
(1)
1 (z) = 3̟h(2z

1/3, 1/4) +
3

2
̟l(2z

1/3, 1/4) (6.2)
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It is then natural to study the restriction of the superpotential W(η,±). Since the twice

logarithmic periods of the two-parameter model do not restrict to a period of the one-

parameter model, we should allow for a modification of W by a rational period. The best

result is obtained for the combination

W(1)(z) =

(
W +

1

3
̟H − 1

2
̟L

)
(2z1/3, 1/4) =

(
W̃ +

1

12
̟H

)
(2z1/3, 1/4) (6.3)

Applying the Picard-Fuchs operator of P111113[2, 6],

L(1) = θ4 − 16

3
z(6θ + 1)(6θ + 3)2(6θ + 5) (6.4)

gives the remarkable inhomogeneity

L(1)W(1)(z) =

∞∑

n=1

2n+1Γ(2n)

27Γ(n)2
(10n − 9)zn

=
4

27

z1/3 + 112z2/3

(1 − 8z1/3)5/2

(6.5)

One should now expect that after inserting the mirror map of the one-parameter model,

W(1) has an integer BPS expansion that moreover is related to the expansion of the two-

parameter model in a simple way. Recall that in the closed string sector, one has the

sum rule [3]
i∑

j=0

Gi,j = G
(1)
i (6.6)

where G
(1)
i are the invariants appearing in the expansion (p = exp(̟

(1)
1 /̟

(1)
0 ))

ˆ̟
(1)
2 = 2(log p)2 +

∑

i,k

iG
(1)
i

k2
pki (6.7)

For W(1), such a relation only emerges after a modification analogous to (4.39).

W̃(1) = W(1) − 1

4
̟

(1)
2 (6.8)

has the A-model expansion

1

6
(log p)2 +

∑

m

N
(1)
m

k2
pkm/3 (6.9)

These invariants now satisfy

N (1)
m =

m∑

n=0

Nm,n (6.10)

while the first few of them are

N1 = 12 , N2 = 96 , N3 = 788 , N4 = 2442 , N5 = 21012 , N6 = 481352 , . . . (6.11)
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It will be interesting to verify the relation (6.10) by an analysis of the A-model geometry. It

is also worthwhile to use the rational mapping2 between the B-model geometries to obtain

curves representative of the superpotential in the one-parameter model, and to then derive

the inhomogeneity (6.5) by the Griffiths-Dwork method. This computation is, however,

somewhat uncertain because the B-model geometry of the one-parameter model is singular

(for generic values of the parameter) precisely at the points where the residues should be

localized. If the modifications (4.39), (6.8) seem a bit ad hoc, we point out that the actual

comparison of closed string invariants [3] takes place at the level of the Yukawa couplings.

The open string analogue would be a comparison of Griffiths infinitesimal invariants [41].

7 D-brane phase transitions at large volume

In this section, we study and interpret the analytic properties of the solutions of the

differential equation

θ2
yV (y) =

1

(1 − 4y)1/2
(7.1)

where θy = y d
dy . This equation is the restriction of the inhomogeneous Picard-Fuchs

equation (4.17) to the locus z2 = 0. The complex y-plane is a three-fold cover of the

divisor Dd that we introduced in section 5. There are three special points. The intersection

with C∞ corresponds to y = 0, the intersection with D(0,−1) is the point y = ∞, and the

intersection with Cd occurs at y = 1
4 .

7.1 Analytic continuation via dilogarithm

It is natural to begin and fix boundary condition at 4y = 1. In terms of the variable

w = 1 − 4y (7.2)

the differential equation (7.1) is

(1 − w)∂w(1 − w)∂wV = w−1/2 (7.3)

and we pick the solution of the inhomogeneous equation that vanishes at w = 0. This

solution can be written as

V (w) =
1

2

(
log

1 −√
w

2

)2

− 1

2

(
log

1 +
√
w

2

)2

+ Li2
1 −√

w

2
− Li2

1 +
√
w

2
(7.4)

Here Li2(z) is the dilogarithm. It can be defined by its power-series expansion around z = 0

Li2(z) =

∞∑

n=1

zn

n2
(7.5)

and analytically continued through the complex plane via the integral

Li2(z) = −
∫

log(1 − z)

z
dz (7.6)

with a branch cut from z = 1 to z = ∞.
2I am grateful to Dave Morrison and Sheldon Katz for recovering this birational equivalence from [3].
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There is now little work for us to do if we are willing to refer to some standard properties

of the dilogarithm. Using the transformation

Li2(z) = −Li2(1 − z) +
π2

6
− log z log(1 − z) (7.7)

we obtain the representation (y = (1 −w)/4),

V =
1

2
(log y)2 − π2

6
−
(

log
1 +

√
1 − 4y

2

)
+ 2Li2

1 −√
1 − 4y

2
(7.8)

which gives the expansion around y = 0,

V =
(log y)2

2
− π2

6
+

∞∑

m=1

Γ(1 + 2m)

Γ(1 +m)2m2
ym (7.9)

Note that this agrees with (4.20) up to a constant, which will play an important role

below. On the other hand, applying the identity (valid under continuation through the

upper half plane)

Li2(1/z) = −Li2(z) −
π2

6
− 1

2

(
log(−z)

)2
(7.10)

we obtain (with x = 1/y),

V = iπ lnx− 1

2

(
log

√
x2 − 4x+ x√
x2 − 4x− x

)2

− 2Li2

(√
x2 − 4x+ x

2

)
(7.11)

which gives the expansion around x = 0

V = iπ log x− i

∞∑

m=0

Γ(1 + 2m)

Γ(1 +m)2(m+ 1
2)224m+1

xm+1/2 (7.12)

As a consistency check, we note the transformations of V under the monodromies around

the three points

y → e2πiy : V → V + 2πi log y +
(2πi)2

2

z → e2πiz : V → −V

x→ e2πix : V → −V + 2πi log x+
(2πi)2

2

(7.13)

which indeed compose correctly.

7.2 Interpretation

The information gathered so far is sufficient to predict some non-trivial properties of the

A-model geometry that is mirror to the configuration of holomorphic curves introduced

in section 4. Classically, vacuum configurations of A-branes are described by Lagrangian

submanifolds L ⊂ X equipped with flat bundles. There are however, quantum corrections
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from worldsheet instantons wrapping holomorphic disks [10] that affect the vacuum struc-

ture in a qualitative way. Since instanton corrections die out when the Kähler moduli are

taken to infinity, but are present for any finite value, the vacuum structure of A-branes can

change in a discontinuous way in the large volume limit. This complication is at the heart

of understanding mirror symmetry for open strings in an invariant way.

In our problem, a minimum requirement is that the A-brane should have 6 super-

symmetric vacua for finite values of the Kähler moduli. We can use the structure of the

superpotential, or more precisely the spectrum of domainwall tensions, to deduce what the

corresponding classical configurations should look like.

Recall that in section 4 we introduced the discrete labels (η,±), where η is a third

root of unity. We will presently see that because of the mixing between open strings and

Ramond-Ramond flux degrees of freedom, it is actually more efficient to resort to Z-valued

labels. Thus we write

η = e2πia/3 , ± = e2πib/2 (7.14)

and take a, b ∈ Z. We denote the tension of supersymmetric domainwalls between adjacent

vacua as

T2,(a,b) = W(a+1,b) −W(a,b)

T3,(a,b) = W(a,b+1) −W(a,b)

(7.15)

Up to closed string periods, we can deduce the asymptotic form of T2, T3 from our com-

putations in section 4. In the large volume expansion in the A-model, for t1 ≫ t2 we find

from (4.36) (we use s = (t1 − t2)/3, and absorb all factors of (2πi))

T2,(a,b) = (−1)b
1

3
(t1 − t2 + a)2 + · · ·

T3,(a,b) = (−1)b
1

3
(t1 − t2 + a) + (−1)b

1

6
+ · · ·

(7.16)

We now give an interpretation of this structure from the A-model point of view, after which

we will see that there are other subleading corrections to (7.16). To fix ideas somewhat

more generally, we consider, in type IIA string theory compactified on a Calabi-Yau X, a

D6-brane wrapped on a Lagrangian submanifold L ⊂ X. If we assume that L is classically

rigid, i.e., b1(L) = 0, possible choices of the gauge field are distinguished by the value of a

discrete Wilson line w ∈ H1(L,Z) ∼= H2(L,Z), or equivalently a first Chern class.

There can now be two types of domainwalls. We can change the Lagrangian subman-

ifold to a homologous Lagrangian L′, or we can change the value of the gauge field to w′.

The first type of transition (say around 0 = x3 ∈ R ⊂ R
3,1) is represented in space-time by

a supersymmetric 4-cycle in X ×R that asymptotes to L or L′ for x3 → ±∞, respectively.

In the Calabi-Yau, the three-cycle sweeps out a four chain Γ4, with ∂Γ4 = L′ − L. The

classical BPS tension of such a domainwall is in the large volume limit given by
∫

Γ4

J ∧ J (7.17)

where J is the complexified Kähler form. To change the value of the magnetic flux w, we

pick a relative 2-cycle Γ2 ∈ H2(X,L) that ends on L in a one-cycle equivalent to w′ − w.
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We then wrap a D4-brane on Γ2 × {x3 = 0}. Its tension is classically given by

∫

Γ2

J (7.18)

In our case, it is easy to distinguish the two types from (7.16). Since J ∼ ti, we see from

the scaling behavior that T2 must correspond to a domainwall changing the Lagrangian

submanifold, whereas T3 corresponds to a change of magnetic flux. This is consistent with

having two rigid Lagrangians each with fundamental group Z3.

But there are additional constraints that we have to take into account. From the A-

model perspective, large volume monodromies, i.e., changes of ti by integers, must have

a consistent interpretation as a symmetry of brane vacua and domainwall spectrum. As

pointed out in [1], the apparent lack of periodicity of (7.16) in a can be compensated

by a non-trivial action on the Ramond-Ramond fluxes. Specifically, under a → a + 3,

b → b + 2, the domainwalls must return to themselves up to an integral closed string

period. The possibilities here include t1, t2, and 1, interpreted as changing the RR 4 and

6-form flux respectively. Similar reasoning implies that T3,(a,b) + T3,(a+1,b) + T3,(a+2,b) and

T2,(a,b) + T2,(a,b+1) should also be integral closed string periods. (These requirements are

equivalent to the superpotential having integral monodromy.)

Another constraint comes from the B-model, and the fact that the curves C(η,+) and

C(η,−) merge together when 4ηy = 1. This means that T2 is a tensionless domainwall at

the open string discriminant Cd. The calculations in the previous subsection then imply

that on Dd, for t1 ≫ t2, T2 should asymptote to

6V ∼ 1

3
(t1 − t2)

2 +
1

4
(7.19)

Implementing all these constraints, we find that the correct asymptotic behavior of the

domainwalls is given by

T2,(a,b) = (−1)b
1

3
(t1 − t2 + a)2 + (−1)b

1

4
+ · · ·

T3,(a,b) = (−1)b
1

3
(t1 − t2 + a) +

(−1)b + 1

6
+ · · ·

(7.20)

where now the dots only contain worldsheet instanton corrections that are determined from

the solution of the differential equation. For completeness, we note that the structure (7.20)

can be derived from the modified superpotential

W(a,b) = (−1)b
1

6
(t1 − t2 + a)2 +

1

6
(t1 − t2 + a) + (−1)b

1

8
+ · · · (7.21)

Since this differs from (4.36) only by integral periods, the modification does not interfere

with the inhomogeneous Picard-Fuchs equation.

Using mirror symmetry, and the differential equations, we can analytically continue

these expressions through the entire moduli space. This could be used to check integrality

of the monodromies around the small volume phases of the closed string geometry.
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For the moment, we will however restrict attention to the behavior under analytic

continuation on the exceptional large volume divisor Dd. Notice that as we move to-

wards Cd, T2 decreases. This means that under this deformation of symplectic structure

of X, the two Lagrangians classically approach each other (this is another indication that

the Lagrangians should not be real slices). Simultaneously however, worldsheet instanton

corrections become strong, spoiling the geometric picture. Another semi-classical regime

emerges for t2 ≫ t1, i.e., close to D(0,−1). What can we say about the Lagrangian geometry

in this phase? From (7.12), we find the asymptotic behavior in this regime

T̃2,(a,b) = (−1)b(t2 − t1) + · · ·

T̃3,(a,b) = (−1)b
1

2
+

1

6
+ · · ·

(7.22)

where the dots again only contain non-perturbative corrections. We see from these expres-

sions that there should be only a single Lagrangian submanifold L̃ relevant in this phase.

The domainwall T2 must correspond to a holomorphic disk ending on L̃. Moreover, the do-

mainwall T3 classically has vanishing tension (in general, the constant non-integral terms

in the above superpotentials are expected to arise from perturbative worldsheet correc-

tions). Thus it appears that in this regime, although all closed string worldsheet instanton

corrections are small, the vacuum structure on L̃ cannot be understood classically.

There is a hopefully more invariant way to characterize the occurrence of this phase

transition. The asymptotic form of T3 for t1 ≫ t2 implies that the Lagrangians L, L′

admit the boundary of holomorphic disks whose symplectic area scales as (t1 − t2)/3.

(This is precisely the variable in which we have expanded the superpotential in section 4.

Note that the notion is well-defined since when H1(L) is torsion we can invert the map

H2(X) → H2(X,L) over the rationals.) Such holomorphic disks then introduce additional

walls in the Kähler cone, across which the disks undergo a transition reminiscent of a

“flop”. (The Lagrangian in the other phase does not seem to have domainwalls scaling as

(t2 − t1)/3. The instanton corrections suggest that the disk is nevertheless still present.)

Note that flop transitions of holomorphic disks under variation of open string moduli have

been observed in [13, 40, 42, 43]. A transition between 4-chain and 2-chain domainwalls

under variation of only closed string moduli was described in [20], but involved continuation

through small volume phases.

8 Outlook

In this work, we have computed D-brane contributions to the spacetime superpotential for

bulk fields in several compact Calabi-Yau geometries. Our B-model results are holomor-

phic invariants of the underlying quantum D-brane geometry and we have interpreted the

results in appropriate semi-classical regimes in the A-model. Among our findings is an

interesting phase transition under which the classical topology of the Lagrangian geometry

and associated domainwalls changes. Among possible future directions, let us mention the

following three.
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First of all, it will be interesting to see whether the vacuum structure in the regime

t2 ≫ t1 can be understood in semi-classical terms in the A-model. This is likely to involve

dynamical open string moduli, which we have suppressed in the entire discussion.

Secondly, it would be interesting to repeat the analysis for other multi-parameter

models, to see how much of the structure survives. Residue computations on the two-

parameter models P11222[8] and P11669[18] give results very similar to (4.14). However, the

quadratic equation (4.13) is replaced by a quartic and cubic equation, respectively. This

makes the solution of the extended Picard-Fuchs equations slightly more complicated.

Thirdly, one could investigate the structure of loop amplitudes in these models, using

the extended holomorphic anomaly equations of [38, 41]. This is interesting because the

D-branes that we have studied here presumably do not arise as fixed point sets of anti-

holomorphic involutions in the A-model. As a result, they should offer a greater degree of

flexibility in implementing the topological tadpole cancellation condition of [38].
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